博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【leetcode】Triangle
阅读量:5276 次
发布时间:2019-06-14

本文共 2705 字,大约阅读时间需要 9 分钟。

Question:

 

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[     [2],    [3,4],   [6,5,7],  [4,1,8,3]]

Anwser 1:      

 

class Solution {public:    int minimumTotal(vector
> &triangle) { // Start typing your C/C++ solution below // DO NOT write int main() function int rows = triangle.size(); if(0 == rows) return 0; int *minSums = new int[rows]; int *temp = new int[rows]; for(int r = 0; r < rows; r++) { vector
vec = triangle[r]; temp[0] = vec[0] + (r > 0 ? minSums[0] : 0); for(int i = 1; i < r; i++) { temp[i] = vec[i] + min(minSums[i-1], minSums[i]); } if(r > 0) { temp[r] = vec[r] + minSums[r-1]; } int *tswap = temp; temp = minSums; minSums = tswap; } int m = minSums[0]; for(int i = 1; i < rows; i++) { if(minSums[i] < m){ m = minSums[i]; } } delete temp; delete minSums; return m; }};

 

Anwser 2:     

 

class Solution {public:    int minimumTotal(vector
> &triangle) { // Start typing your C/C++ solution below // DO NOT write int main() function int line = triangle.size(); for(int i = line -2 ; i >= 0; i--) { for(int j = 0; j < triangle[i].size(); j++) { triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1]); } } return triangle[0][0]; }};

 

Anwser 3:

 

class Solution {public:        void run(vector
> &triangle, int row, int idx, int curSum, int &minPath) { if (row == triangle.size()) { minPath = min(minPath, curSum); return; } run(triangle, row + 1, idx, curSum + triangle[row][idx], minPath); run(triangle, row + 1, idx + 1, curSum + triangle[row][idx], minPath); } int minimumTotal(vector
> &triangle) { // Start typing your C/C++ solution below // DO NOT write int main() function int minPath = INT_MAX; if (triangle.size() == 0) { return 0; } run(triangle, 0, 0, 0, minPath); return minPath; }};

注意点:

 

1) Judge Small is ok, but Judge Large is error

2) 如果迭代很深的话,容易造成压栈占用内存很高,超出段后会溢出

 

 

转载于:https://www.cnblogs.com/xinyuyuanm/archive/2013/04/14/3020136.html

你可能感兴趣的文章
搜索引擎Solr系列(二): Solr6.2.1 从MySql中导入数据
查看>>
C# Winform中DataGridView的DataGridViewCheckBoxColumn CheckBox选中判断
查看>>
基于卷积神经网络的匹配代价算法
查看>>
HTTPS是如何加密的
查看>>
24-单调递增最长子序列(多种解法总结)
查看>>
url传值中文乱码
查看>>
js 操作方法
查看>>
Spring3之Security
查看>>
Node,Document,HTMLDocument,HTMLCollection解析
查看>>
Linux网络技术管理
查看>>
Apache web服务
查看>>
随机数
查看>>
mac 安装cmake
查看>>
PHP-7.1 源代码学习:字节码在 Zend 虚拟机中的解释执行 之 概述
查看>>
我的常用网站收集
查看>>
Why-are-GPUs-well-suited-to-deep-learning
查看>>
从Zero到Hero,OpenAI重磅发布深度强化学习资源
查看>>
浏览器上网 (Safari & Chrome)
查看>>
京东2019春招Java工程师编程题题解
查看>>
java后台开发实习--第一次面试
查看>>